CHO cell lines generated by PiggyBac transposition

نویسندگان

  • Mattia Matasci
  • Virginie Bachmann
  • Lucia Baldi
  • David L Hacker
  • Maria De Jesus
  • Florian M Wurm
چکیده

A major bottleneck in the manufacture of recombinant therapeutic proteins is the time and effort needed for the generation of stable, high-producing mammalian cell lines. Conventional gene transfer methods for stable cell line generation rely on random transgene integration, resulting in unpredictable and highly variable levels of expression of the transgene in individual clones [1,2]. As a consequence, a large number of stably transfected cells must be analyzed to recover a few high-producing clones. Recently, we described the use of a PiggyBac (PB) transposon for the generation of high-producing mammalian cell lines [3]. The PB dual vector system consists of 1) a donor vector carrying an artificial transposon with a mammalian expression cassette for the recombinant transgene and puromycin selection marker and 2) a helper vector driving transient expression of the PB transposase (PBase). PB transposition mediates stable transgene integration via a “cut and paste” mechanism in which the PBase excises the artificial transposon sequence from the plasmid and catalyzes its insertion into the host cell genome. A main advantages of the PB system over conventional passive integration are an improved efficiency of transgene integration resulting in a more integration events and more stable clones. Furthermore, PB favors transgene integration into actively transcribed regions of the host genome [4]. The PB transposon has a high cargo capacity of up to 14 Kb and transposition results in the stable genomic integration of well-defined sequences, thus reducing the probability of integration of truncated, non-functional transgenes [5]. Finally, recent reports have demonstrated the feasibility of using the PB system to obtain persistent expression of multiple genes carried either on a single or on distinct donor vectors [6]. We initially determined the efficiency of the PB system in the generation of stable lines using suspension adapted mammalian cells. CHO and HEK 293 cells were co-transfected with an eGFP-bearing donor plasmid along with the PB helper plasmid. The cells were then grown in the absence of puromycin, and the percentage of GFP-expressing cells in each culture was determined by flow cytometry on a daily basis. By 21 days posttransfection, the remaining GFP-positive cells were assumed to be recombinant. Compared to conventional transfection of plasmid DNA, PB transposition resulted in an improvement in the efficiency of stable cell line generation up to 20-fold for both CHO and HEK 293 cells (Figure 1A). To further evaluate the PB system, CHO cells expressing a tumour necrosis factor receptor:Fc fusion protein (TNFR:Fc) were generated either by PB-transposition or by conventional transfection. Clonal cell lines were recovered following selection in 50 or 10 μg/mL puromycin for two weeks. Recovered lines were grown in suspension culture for 7 days in 24-well plates after which the medium was analyzed by ELISA to determine TNFR:Fc productivity. Transposition increased the frequency of high-producing clones in the transfected population (Figure 1B). To further characterized for the level and stability of transgene expression the original cell pools generated by PB transposition or conventional transfection, as well as the top 4 producers from each transfection were cultivated in the absence of selection in serum-free suspension culture, over a period of 16 or 14 weeks, respectively. When compared to clones and cell pools generated by conventional transfection, PBderived cell lines and cell pools produced up to 4-fold more recombinant protein and had greater transgene expression stability (Figure 1C) * Correspondence: [email protected] Laboratory of Cellular Biotechnology, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland Full list of author information is available at the end of the article Matasci et al. BMC Proceedings 2011, 5(Suppl 8):P31 http://www.biomedcentral.com/1753-6561/5/S8/P31

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

piggyBac is a flexible and highly active transposon as compared to sleeping beauty, Tol2, and Mos1 in mammalian cells.

A nonviral vector for highly efficient site-specific integration would be desirable for many applications in transgenesis, including gene therapy. In this study we directly compared the genomic integration efficiencies of piggyBac, hyperactive Sleeping Beauty (SB11), Tol2, and Mos1 in four mammalian cell lines. piggyBac demonstrated significantly higher transposition activity in all cell lines ...

متن کامل

Monoclonal antibodies expression improvement in CHO cells by PiggyBac transposition regarding vectors ratios and design

Establishing stable Chinese Hamster Ovary (CHO) cells producing monoclonal antibodies (mAbs) usually pass through the random integration of vectors to the cell genome, which is sensitive to gene silencing. One approach to overcome this issue is to target a highly transcribed region in the genome. Transposons are useful devices to target active parts of genomes, and PiggyBac (PB) transposon can ...

متن کامل

piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells.

Transgenic expression of just four defined transcription factors (c-Myc, Klf4, Oct4 and Sox2) is sufficient to reprogram somatic cells to a pluripotent state. The resulting induced pluripotent stem (iPS) cells resemble embryonic stem cells in their properties and potential to differentiate into a spectrum of adult cell types. Current reprogramming strategies involve retroviral, lentiviral, aden...

متن کامل

Generation of an inducible and optimized piggyBac transposon system†

Genomic studies in the mouse have been slowed by the lack of transposon-mediated mutagenesis. However, since the resurrection of Sleeping Beauty (SB), the possibility of performing forward genetics in mice has been reinforced. Recently, piggyBac (PB), a functional transposon from insects, was also described to work in mammals. As the activity of PB is higher than that of SB11 and SB12, two hype...

متن کامل

The piggyBac element is capable of precise excision and transposition in cells and embryos of the mosquito, Anopheles gambiae.

The piggyBac transposable element was tested for transposition activity in plasmid-based excision and inter-plasmid transposition assays to determine if this element would function in Anopheles gambiae cells and embryos. In the Mos55 cell line, precise excision of the piggyBac element was observed only in the presence of a helper plasmid. Excision occurred at a rate of 1 event per 1000 donor pl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2011